[1] 范益群, 漆虹, 徐南平. 多孔陶瓷膜制備技術(shù)研究進(jìn)展[J]. 化工學(xué)報(bào), 2013, 64(1): 107-115.
[2] Gestel T V, Vandecasteele C, Buekenhoudt A, et al. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability[J]. Journal of Membrane Science, 2002, 207: 73-89.
[3] 徐南平. 面向應(yīng)用過程的陶瓷膜材料設(shè)計(jì)、制備與應(yīng)用[M]. 北京: 科學(xué)出版社, 2005.
[4] 邢衛(wèi)紅, 仲兆祥, 景文珩, 等. 基于膜表面與界面作用的膜污染控制方法[J]. 化工學(xué)報(bào), 2013, 64(1): 173-181.
[5] Leger C, Lira H D, Paterson R. Preparation and properties of surface modified ceramic membranes .Part Ⅱ. Gas and liquid permeabilities of 5 nm alumina membranes modified by a monolayer of bound polydimethylsiloxane (PDMS) silicone oil[J]. Journal of Membrane Science, 1996, 120(1): 135-146.
[6] Sah A, Castricum H L, Bliek A, et al. Hydrophobic modification of γ-alumina membranes with organochlorosilanes[J]. Journal of Membrane Science, 2004, 243(1-2): 125-132.
[7] Kuraoka K, Kakitani T, Suetsugu T, et al. Methanol vapor separation through the silica membrane prepared by the CVD method with the aid of evacuation[J]. Separation and Purification Technology, 2001, 25(1-3): 161-166.
[8] Atwater J E, Akse J R. Oxygen permeation through functionalized hydrophobic tubular ceramic membranes[J]. Journal of Membrane Science, 2007, 301(1-2): 76-84.
[9] Oh S, Kang T, Kim H, et al. Preparation of novel ceramic membranes modified by mesoporous silica with 3-aminopropyltriethoxysilane (APTES) and its application to Cu2+ separation in the aqueous phase[J]. Journal of Membrane Science, 2007, 301(1-2): 118-125.
[10] 李倩, 王野, 王曉琳. 兩性離子在高分子膜表面功能化改性中的研究進(jìn)展[J]. 高分子通報(bào), 2012, (3): 1-7.
[11] Jimbo T, Tanioka A, Minoura N. Characterization of an Amphoteric-Charged Layer Grafted to the Pore Surface of a Porous Membrane[J]. Langmuir, 1998, 14: 7112-7118.
[12] Moritz T, Benfer R, Arki P, et al. Investigation of ceramic membrane materials by streaming potential measurements[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 47: 25-33.
[13] Ricq L, Pierre A, Reggiani J C, et al. Use of electrophoretic mobility and streaming potential measurements to characterize electrokinetic properties of ultrafiltration and microfiltration membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 138: 301-308.
[14] Fievet P, Sbaï M, Szymczyk A, et al. A New Tangential Streaming Potential Setup for the Electrokinetic Characterization of Tubular Membranes[J]. Separation Science and Technology, 2004, 39(13): 2931-2949.
[15] Möckel D, Staude E, Cin M D, et al. Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potential of carboxylated polysulfone membranes[J]. Journal of Membrane Science, 1998, 145: 211-222.
[16] Moritz T, Benfer S, Árki P, et al. Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes[J]. Separation and Purification Technology, 2001, 25: 501-508.
[17] Zhang Q, Fan Y, Xu N. Effect of the surface properties on filtration performance of Al2O3–TiO2 composite membrane[J]. Separation and Purification Technology, 2009, 66(2): 306-312.
[18] 高斌, 舒莉, 邢衛(wèi)紅, 等. 預(yù)處理劑對(duì)陶瓷膜表面性質(zhì)及滲透通量的影響[J]. 膜科學(xué)與技術(shù), 2004, 24(6): 15-19.
[19] Zhao Y, Xing W, Xu N, et al. Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension[J]. Journal of Membrane Science, 2005, 254(1-2): 81-88.
[20] 吳也凡, 羅凌虹, 石紀(jì)軍, 等. ZrO2納米晶涂層修飾改性的陶瓷微濾膜性能[J]. 稀有金屬材料與工程, 2009, 38: 631-634.
[21] Gentleman M M, Ruud J A. Role of hydroxyls in oxide wettability[J]. Langmuir, 2010, 26(3): 1408-1411.
[22] Liang S, Kang Y, Tiraferri A, et al. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles[J]. ACS Appl Mater Interfaces, 2013, 5(14): 6694-6703.
[23] Xiang T, Yue W W, Wang R, et al. Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility[J]. Colloids Surf B Biointerfaces, 2013, 110: 15-21.
[24] Wavhal D S, Fisher E R. Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization[J]. Journal of Membrane Science, 2002, 209: 255-269.
[25] Mendret J, Hatat-Fraile M, Rivallin M, et al. Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants[J]. Separation and Purification Technology, 2013, 111: 9-19.
[26] Goei R, Dong Z, Lim T T. High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: Fabrication, characterizations and performances[J]. Chemical Engineering Journal, 2013, 228: 1030-1039.
[27] Zhou J-e, Chang Q, Wang Y, et al. Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane[J]. Separation and Purification Technology, 2010, 75(3): 243-248.
[28] Vatanpour V, Madaeni S S, Rajabi L, et al. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes[J]. Journal of Membrane Science, 2012, 401-402: 132-143.
[29] Vatanpour V, Madaeni S S, Moradian R, et al. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite[J]. Journal of Membrane Science, 2011, 375(1-2): 284-294.
[30] Ochoa N. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes[J]. Journal of Membrane Science, 2003, 226(1-2): 203-211.
[31] Mittal P, Jana S, Mohanty K. Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater[J]. Desalination, 2011, 282: 54-62.
[32] Faibish R S, Cohen Y. Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions[J]. Journal of Membrane Science, 2001, 185: 129-143.
[33] Xue Z, Wang S, Lin L, et al. A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation[J]. Advanced Materials, 2011, 23(37): 4270-4273.
[34] He H, Jing W, Xing W, et al. Improving protein resistance of α-Al2O3 membranes by modification with POEGMA brushes[J]. Applied Surface Science, 2011, 258(3): 1038-1044.
[35] Rovira-Bru M, Giralt F, Cohen Y. Protein Adsorption onto Zirconia Modified with Terminally Grafted Polyvinylpyrrolidone[J]. J Colloid Interface Sci, 2001, 235(1): 70-79.
[36] Zhao Y H, Wee K H, Bai R. Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method[J]. Journal of Membrane Science, 2010, 362(1-2): 326-333.
[37] Ida J-i, Matsuyama T, Yamamoto H. Immobilization of glucoamylase on ceramic membrane surfaces modified with a new method of treatment utilizing SPCP–CVD[J]. Biochemical Engineering Journal, 2000, 5(3): 179-184.
[38] Tadanaga K, Katata N, Minami T. Super-Water-Repellent Al2O3 Coating Films with High Transparency[J]. Journal of the American Ceramic Society, 1997, 80(4): 1040-1042.
[39] Santos L R B, Belin S, Briois V, et al. Study of structural surface modified tin oxide membrane prepared by sol-gel route sintered at 400oC[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 171-175.
[40] Bothun G D, Peay K, Ilias S. Role of tail chemistry on liquid and gas transport through organosilane-modified mesoporous ceramic membranes[J]. Journal of Membrane Science, 2007, 301(1-2): 162-170.
[41] 晏良宏, 匙芳廷, 蔣曉東, 等. 疏水疏油二氧化硅增透膜的制備[J]. 無機(jī)材料學(xué)報(bào), 2007, 22(6): 1247-1250.
[42] Schondelmaier D, Cramm S, Klingeler R, et al. Orientation and Self-Assembly of Hydrophobic Fluoroalkylsilanes[J]. Langmuir, 2002, 18(16): 6242-6245.
[43] Krajewski S R, Kujawski W, Dijoux F, et al. Grafting of ZrO2 powder and ZrO2 membrane by fluoroalkylsilanes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243(1-3): 43-47.
[44] Kolsch P, Sziladi M, Noack M, et al. Ceramic membranes for water separation from organic solvents[J]. Chemical Engineering & Technology, 2002, 25(4): 357-362.
[45] Alami Younssi S, Iraqi A, Rafiq M, et al. γ Alumina membranes grafting by organosilanes and its application to the separation of solvent mixtures by pervaporation[J]. Separation and Purification Technology, 2003, 32(1–3): 175-179.
[46] Gao N, Li M, Jing W, et al. Improving the filtration performance of ZrO2 membrane in non-polar organic solvents by surface hydrophobic modification[J]. Journal of Membrane Science, 2011, 375(1-2): 276-283.
[47] Larbot A, Gazagnes L, Krajewski S, et al. Water desalination using ceramic membrane distillation[J]. Desalination, 2004, 168: 367-372.
[48] Hyun S H, Jo S Y, Kang B S. Surface modification of γ-alumina membranes by silane coupling for CO2 separation[J]. Journal of Membrane Science, 1996, 120(2): 197-206.
[49] Abidi N, Sivade A, Bourret D, et al. Surface modification of mesoporous membranes by fluoro-silane coupling reagent for CO2 separation[J]. Journal of Membrane Science, 2006, 270(1–2): 101-107.
[50] Yazawa T, Kishimoto M, Inoue T, et al. Preparation of CO2-selective separation membranes with highly chemical and thermal stability prepared from inorganic-organic nanohybrids containing branched polyethers[J]. Journal of Materials Science, 2007, 42(2): 723-727.
[51] Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review[J]. Journal of Food Engineering, 2004, 63(3): 303-324.
[52] Camacho L, Dumée L, Zhang J, et al. Advances in Membrane Distillation for Water Desalination and Purification Applications[J]. Water, 2013, 5(1): 94-196.
[53] Krajewski S R, Kujawski W, Bukowska M, et al. Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions[J]. Journal of Membrane Science, 2006, 281(1-2): 253-259.
[54] Gazagnes L, Cerneaux S, Persin M, et al. Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes[J]. Desalination, 2007, 217(1–3): 260-266.
[55] Khemakhem S, Amar R B. Modification of Tunisian clay membrane surface by silane grafting: Application for desalination with Air Gap Membrane Distillation process[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 387(1-3): 79-85.
[56] Kujawa J, Kujawski W, Koter S, et al. Membrane distillation properties of TiO2 ceramic membranes modified by perfluoroalkylsilanes[J]. Desalination and Water Treatment, 2013, 51(7-9): 1352-1361.
[57] 李梅, 高能文, 范益群. 疏水陶瓷膜脫除油中水分的研究[J]. 膜科學(xué)與技術(shù), 2012, 32(3): 86-90.
[58] 柯威, 高能文, 李梅, 等. 疏水性Al2O3膜表面的化學(xué)穩(wěn)定性[J]. 南京工業(yè)大學(xué)學(xué)報(bào), 2010, 32(6): 45-49.
[59] Su C, Xu Y, Zhang W, et al. Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water[J]. Applied Surface Science, 2012, 258(7): 2319-2323.
[60] Meng T, Xie R, Ju X J, et al. Nano-structure construction of porous membranes by depositing nanoparticles for enhanced surface wettability[J]. Journal of Membrane Science, 2013, 427: 63-72.
[61] Ahmad N A, Leo C P, Ahmad A L. Superhydrophobic alumina membrane by steam impingement: Minimum resistance in microfiltration[J]. Separation and Purification Technology, 2013, 107: 187-194.
[62] Li F, Yang Y, Fan Y, et al. Modification of ceramic membranes for pore structure tailoring: The atomic layer deposition route[J]. Journal of Membrane Science, 2012, 397-398: 17-23.
[63] 李丁, 高保嬌, 許文梅. 采用新型分子表面印跡技術(shù)構(gòu)建手性空穴實(shí)現(xiàn)對(duì)手性藥物對(duì)映體的分子識(shí)別與高效拆分[J]. 化學(xué)學(xué)報(bào), 2011, 69(24): 3019-3027.
[64] 田秀淑, 任書霞, 梅世剛. 離子吸附法制備載銀Al2O3抗菌劑的研究[J]. 中國(guó)陶瓷, 2010, 46(6): 17-19.
[65] Cao X, Jing W, Xing W, et al. Fabrication of a visible-light response mesoporous TiO2 membrane with superior water permeability via a weak alkaline sol-gel process[J]. Chem. Commun., 2011, 47(12): 3457-3459.
[66] 王輝, 周守勇, 李梅生, 等. pH敏感型管式陶瓷復(fù)合膜的制備[J]. 膜科學(xué)與技術(shù), 2012, 32(4): 26-31.
[67] Chu L Y, Park S H, Yamaguchi T, et al. Preparation of thermo-responsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates[J]. Journal of Membrane Science, 2001, 192: 27-39.
|