未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(上)
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
第1頁 /(共3頁)
北極星環(huán)保網(wǎng)訊:摘要:現(xiàn)代污水處理技術(shù)在經(jīng)歷了100年的發(fā)展之后迎來了新的挑戰(zhàn)與機遇,未來污水處理發(fā)展的方向?qū)⒊o湊性、可持續(xù)性的方向發(fā)展,其中好氧顆粒污泥將向著連續(xù)流的方向發(fā)展,在實際應(yīng)用中將會更加注重絮體與顆粒污泥之間的平衡;碳轉(zhuǎn)向是今后污水處理發(fā)展的一個重要方向;主流短程脫氮技術(shù)的發(fā)展愈加深入,未來的突破可能在微生物方面的認(rèn)識進展;生物膜技術(shù)的認(rèn)識和應(yīng)用將會更加深入,MABR技術(shù)獨特的特點使得供氧效率得到極大提高。在上述工藝發(fā)展過程中,ICA的應(yīng)用將更加普及,基于數(shù)據(jù)調(diào)諧的模型應(yīng)用將顯現(xiàn)出強大的力量。由于篇幅有限本文將分為上、下兩篇推送。
1污水處理工藝發(fā)展的歷史回顧
1.1污水處理工藝的發(fā)展
1914年,英國人Ardern、Lockett發(fā)明了活性污泥工藝,這一事件成為了現(xiàn)代污水發(fā)展的起點和重要的標(biāo)志性事件。自那以后,活性污泥工藝成為污水處理的主流處理技術(shù),圍繞著活性污泥工藝,污水處理技術(shù)獲得了長足的發(fā)展,出現(xiàn)了百花齊放的技術(shù)格局。
活性污泥工藝在經(jīng)歷了早期的專利權(quán)問題之后迎來了技術(shù)的空前繁榮,主要體現(xiàn)在基本理論的完善和各種變形工藝的出現(xiàn),尤其是20世紀(jì)70年代出現(xiàn)的生物脫氮除磷技術(shù)(BNR)成為活性污泥工藝發(fā)展的一個重要里程碑,并在某種程度上奠定了當(dāng)今污水處理技術(shù)的主要局面,同時生物膜工藝獲得再次發(fā)展機會,IFAS、MBBR及BAF等工藝由于其在緊湊性方面的優(yōu)勢在升級改造方面獲得了一定的優(yōu)勢。另外在20世紀(jì)末,一些創(chuàng)新性的工藝如厭氧氨氧化、好氧顆粒污泥技術(shù)逐漸登上了歷史舞臺,如圖1所示。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
在活性污泥工藝經(jīng)歷了100多年的發(fā)展之后,污水處理技術(shù)的大廈已經(jīng)相當(dāng)完善,目前的污水處理工藝在傳統(tǒng)水質(zhì)方面已經(jīng)不是問題,北美的研究結(jié)果表明,生物脫氮除磷工藝的極限可以達到TN<3 mg/L、TP<0.1 mg/L。荷蘭的研究結(jié)果也表明,在條件適應(yīng)的情況下活性污泥工藝的技術(shù)極限可以達到TN<2.2 mg/L、TP<0.15 mg/L。
1.2污水處理理念的轉(zhuǎn)變
進入21世紀(jì)后,污水處理領(lǐng)域內(nèi)出現(xiàn)了重大的理念變革,污水已經(jīng)不再被認(rèn)為是一種廢物,而是一種可再生的資源,污水處理也正由過去的以衛(wèi)生文明與環(huán)境保護為目標(biāo)向著資源回收的方向發(fā)展。這一點無論從荷蘭提出的NEWs理念,即未來污水處理廠將是營養(yǎng)物、能源與再生水的制造工廠,還是美國水環(huán)境聯(lián)盟正式摒棄污水處理廠之稱,轉(zhuǎn)而統(tǒng)稱為水資源廠,亦或是新加坡倡導(dǎo)的將Wastewater(污水)改稱為Usedwater(舊水),無不印證著在世界范圍內(nèi)污水作為一種可再生資源已經(jīng)深入人心。伴隨著理念的變革,污水處理工藝在技術(shù)的緊湊性、可持續(xù)性、適應(yīng)性方面朝著更加深入的方向發(fā)展。
2未來污水處理工藝發(fā)展的方向
當(dāng)前城市污水處理的主流技術(shù)是生物處理技術(shù),生物處理技術(shù)如何在未來發(fā)展實際上反映了今后相當(dāng)一段時間內(nèi)的污水處理工藝發(fā)展方向。本文僅對未來20年內(nèi)的污水處理技術(shù)發(fā)展做一些分析和判斷。
2.1好氧顆粒污泥技術(shù)
2.1.1歷史與現(xiàn)實中的現(xiàn)象
活性污泥工藝的出現(xiàn)與發(fā)展實際上是采用各種方法選擇微生物的過程。1914年,Ardern和Lockett將曝氣后沉淀下的污泥留了下來,將不易沉降的微生物“淘洗”出去,采用這種序批式的方式,他們觀察到了顆粒污泥的現(xiàn)象。
1972年,James Barnard在接觸穩(wěn)定的試驗裝置中也注意到了顆粒污泥的現(xiàn)象,當(dāng)時他用初沉池的出水進入到反應(yīng)器中,接觸時間15 min,排泥只從表面排泥,接觸區(qū)的污泥濃度22 000 mg/L,Barnard觀察到了明顯的污泥顆粒,“像粗砂一樣”,當(dāng)時的污泥負(fù)荷非常高。
2.1.2好氧顆粒污泥的形成與選擇
活性污泥工藝從誕生至今一直不斷經(jīng)歷著“選擇”的過程,早期的污泥回流使微生物選擇留在系統(tǒng)中,起到了最為關(guān)鍵的作用;此后,人們通過基本的長泥齡方式而使硝化菌在系統(tǒng)中選擇地存在;而生物除磷工藝的出現(xiàn),則是通過厭氧-好氧的交替環(huán)境選擇性地使聚磷菌(PAOs)在系統(tǒng)中存在,可以看出對微生物的選擇過程一直伴隨著污水處理工藝的發(fā)展,如圖2所示。當(dāng)然,在這一系列的基本選擇過程中,還有其他因素的影響,比如硝化過程中對DO的需求、生物除磷過程對VFA的需求等。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
好氧顆粒污泥技術(shù)的出現(xiàn)與發(fā)展實際上仍然是對微生物選擇過程的更進一步認(rèn)識,在這一認(rèn)識過程伴隨著對生物膜、污泥膨脹的更加深入理解。好氧顆粒污泥既可以在只去除COD的好氧環(huán)境中出現(xiàn),也可以在厭氧-好氧的交替環(huán)境中去除COD及氮、磷,在這種形式的顆粒污泥中,硝化菌及普通異養(yǎng)菌在顆粒污泥的最外層,靠近內(nèi)核部分的是反硝化菌、聚磷菌(PAOs)、聚糖菌(GAOs)。因此,好氧顆粒污泥去除營養(yǎng)物的機理實際上與活性污泥工藝相同,只不過并不是在不同的池子來實現(xiàn),而是在顆粒污泥的不同區(qū)域來實現(xiàn)。
目前一般認(rèn)為主要有以下幾個方面對顆粒污泥的形成具有重要的影響:
飽食-饑餓選擇,通常以外部基質(zhì)用于生長的階段稱為飽食期,而以內(nèi)部基質(zhì)(PHB)生長的階段稱為饑餓期。與利用乙酸或葡萄糖等易生物降解有機物相比,異養(yǎng)微生物利用PHB或糖原等慢速可生物降解物質(zhì)的生長速率較慢,利用這一現(xiàn)象可以獲得穩(wěn)定的顆粒污泥。生物除磷的厭氧-好氧過程是實現(xiàn)上述過程的良好方式,在厭氧階段PAO或GAO將乙酸轉(zhuǎn)換為PHB或糖原。因此,rbCOD有利于微生物的快速生長,進而轉(zhuǎn)換為慢速可生物降解的胞內(nèi)物質(zhì)。這樣在生物除磷工藝中就會相對更容易形成顆粒污泥。在饑餓階段,基質(zhì)通過顆粒內(nèi)層的反硝化被降解到最低,或是在顆粒外層的好氧區(qū)域?qū)崿F(xiàn)降解。
有機負(fù)荷(OLR)及基質(zhì)的組成對顆粒污泥的形成很重要,采用較高的負(fù)荷選擇可以使基質(zhì)進入顆粒污泥的內(nèi)層,這樣就容易形成強健的內(nèi)核;|(zhì)組成的影響主要是體現(xiàn)在快速可生物降解COD(rbCOD)與慢速可生物降解COD(sbCOD),在飽食期rbCOD和VFA的獲得對于胞內(nèi)存儲物質(zhì)的形成很關(guān)鍵,而sbCOD則會導(dǎo)致絲狀菌在好氧階段在競爭中獲得優(yōu)勢。
第2頁 /(共3頁)
人們在對生物膜的研究過程中,發(fā)現(xiàn)強的剪切力可以促使形成薄而密實的生物膜,同時伴隨著剪切力相關(guān)的一個重要現(xiàn)象是胞外聚合物(EPS)的產(chǎn)生,EPS在促使細(xì)胞的“凝聚”、“粘合”方面發(fā)揮重要的功能,對于維持生物膜的整體結(jié)構(gòu)方面扮演著重要的角色,在很多的研究中都可以觀察到強剪切力會促使生物膜分泌更多的EPS從而維持生物膜的整體結(jié)構(gòu)平衡。與生物膜類似,水力剪切力對于好氧顆粒污泥的形成也有重要的影響,強的剪切力會促使顆粒污泥的形成,而弱剪切力則不會形成顆粒污泥,只能形成蓬松的絮體結(jié)構(gòu)。
同樣,EPS在對顆粒污泥的形成方面也扮演著類似的角色,強剪切力會促使顆粒污泥像生物膜那樣分泌出更多的EPS來產(chǎn)生平衡的生物結(jié)構(gòu),這也就意味著EPS對于形成穩(wěn)定的顆粒污泥非常重要。
此外,通過選擇性的排泥,將不易沉淀的污泥排出系統(tǒng),沉降速度較快的顆粒留存于系統(tǒng)之內(nèi),提高顆粒污泥在其中的比例,這也是促成顆粒污泥形成的原因之一;其他形成顆粒污泥的因素還包括SRT、有機負(fù)荷、二價陽離子及三價陽離子等。
2.1.3目前的應(yīng)用
目前,作為好氧顆粒污泥技術(shù)的典型代表,Nereda工藝在過去10年里得到快速的發(fā)展,截至2016年全球正在設(shè)計、建設(shè)及運行的Nereda污水處理廠有32座,這些污水處理廠分布于歐洲、美洲、澳洲、非洲等地。與相同負(fù)荷的活性污泥工藝相比,Nereda好氧顆粒污泥技術(shù)可減少占地面積25%~75%,能耗降低20%~50%。
從好氧顆粒污泥的技術(shù)發(fā)展進程來看,以Nereda為代表的好氧顆粒污泥技術(shù)實際上是一種利用內(nèi)在基質(zhì)選擇顆粒污泥的過程,內(nèi)在基質(zhì)選擇的一個關(guān)鍵因素是需要有足夠高的基質(zhì)濃度來形成顆粒,并促使形成較高含量的胞外聚合物(EPS)及胞內(nèi)儲存物,這種方式要求將沉淀較慢的絮體污泥排除系統(tǒng),保留下沉淀較快的顆粒污泥,為了避免出水SS較高,可能需要有一個后置的過濾系統(tǒng)。Nereda這種SBR的技術(shù)形式在很大程度上限制了對現(xiàn)有污水處理廠的改造,因為絕大部分污水處理廠并不是SBR工藝。因此,在推流式工藝上采用外置選擇器的方式在近年來得到了快速的發(fā)展,外置選擇器可以是篩網(wǎng)或旋流器,篩網(wǎng)是利用顆粒的粒徑來截留較大的顆粒污泥,旋流器是利用顆粒污泥密度較大的特點而在底流中獲得較高比例的顆粒污泥,如圖3所示。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
2.1.4未來的發(fā)展
好氧顆粒污泥技術(shù)在未來可能會有以下幾個發(fā)展趨勢。第一,提高工藝應(yīng)用的穩(wěn)定性,好氧顆粒污泥技術(shù)在長期運行過程中的穩(wěn)定性在某種程度上是制約這一技術(shù)應(yīng)用的一個瓶頸,穩(wěn)定性涉及到兩個方面,一個是顆粒污泥的解體,一個是絲狀菌的過度增殖,前者會導(dǎo)致顆粒污泥破碎為細(xì)小顆粒,后者會導(dǎo)致顆粒污泥蓬松,容易流失。
第二,就如同活性污泥工藝從早期的SBR向連續(xù)流工藝發(fā)展一樣,當(dāng)前及今后一段時間內(nèi)好氧顆粒污泥的研發(fā)及應(yīng)用趨勢正朝著連續(xù)流工藝的方向發(fā)展,因為現(xiàn)在的絕大部分污水處理廠是連續(xù)流工藝,將其轉(zhuǎn)為SBR的形式所需的投資費用很高,如何能夠在這些連續(xù)流的污水處理廠中應(yīng)用好氧顆粒污泥技術(shù)成為這一領(lǐng)域的發(fā)展熱點。
第三,好氧顆粒污泥技術(shù)的進一步發(fā)展過程中,在機理與技術(shù)應(yīng)用方面仍然有多個方面需要深入研究,這些方面主要包括理解促成顆粒污泥形成的內(nèi)部基質(zhì)特性、如何確保外置選擇器能夠?qū)崿F(xiàn)良好的污泥沉降性能和生物除磷功能,以及如何將內(nèi)在基質(zhì)選擇和外部選擇的措施應(yīng)用于工程化規(guī)模的污水處理廠。
2.2碳轉(zhuǎn)向
在傳統(tǒng)污水處理工藝中,COD的主要流向是被好氧分解,除此之外還用于脫氮除磷、厭氧消化及污泥處置。目前,污水中的碳已被廣泛認(rèn)為是可貴的資源,可以被用于產(chǎn)生能量(厭氧消化)、開發(fā)出以碳為基礎(chǔ)的商品。因此,污水中的可生物降解有機物從二級處理轉(zhuǎn)向能量回收的這一轉(zhuǎn)變被稱之為碳轉(zhuǎn)向,碳轉(zhuǎn)向是污水處理實現(xiàn)能量自給的必由之路,已經(jīng)成為當(dāng)前及今后一段時間內(nèi)污水處理技術(shù)發(fā)展的一個重要方向。圖4反映的是COD在新舊理念下的流向。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
目前,碳轉(zhuǎn)向的技術(shù)主要有化學(xué)強化一級處理(CEPT)、高負(fù)荷活性污泥工藝、厭氧處理等。CEPT對顆粒性及膠體性COD可獲得40%~80%的去除率,但對溶解性COD無法去除。雖然污水的厭氧處理在熱帶地區(qū)有所應(yīng)用,但在溫帶地區(qū)的主流工藝中由于其速率較低,同時產(chǎn)生的甲烷會有相當(dāng)一部分溶解在出水中,因此尚難以得到廣泛的應(yīng)用。
2.2.1高負(fù)荷活性污泥工藝
高負(fù)荷活性污泥工藝(HRAS)最早由Buswell和Long在1923年開創(chuàng)。HRAS可以設(shè)計成滿足二級處理(BOD5<30 mg/L、SS<30 mg/L)的目的,也可以設(shè)計AB工藝的A段用于碳吸附的目的。當(dāng)用于二級處理時,HRAS的SRT一般1~4 d(與溫度有關(guān)),HRT一般2~4 h;當(dāng)用于碳吸附時工藝參數(shù)有顯著的不同,通常SRT<1 d、HRT<30 min。HRAS工藝能夠用較低的能耗和占地面積將進水中的顆粒性、膠體性、溶解性物質(zhì)富集濃縮于剩余污泥中,通過厭氧消化或焚燒由此實現(xiàn)污水處理的碳轉(zhuǎn)向。HRAS工藝實現(xiàn)碳轉(zhuǎn)向的關(guān)鍵所在是顆粒性COD與膠體性COD的最大化去除,同時又要最低程度的礦化和慢速可生物降解COD(sCOD)的水解。在HRAS工藝中,顆粒性COD與膠體性COD是通過生物絮凝吸附于絮體之上并通過后續(xù)的固液分離得到去除,顆粒性COD與膠體性COD的吸附與胞外聚合物(EPS)的產(chǎn)生有密切關(guān)系,而溶解性COD的去除是胞內(nèi)物質(zhì)貯存的結(jié)果。
雖然ASM模型的歷史已有30年之久,但主要是用于SRT>3 d的活性污泥工藝,對于HRAS工藝ASM模型難以得到理想的結(jié)果。由此,近年來有關(guān)HRAS工藝的模型得到了發(fā)展,其中之一便是雙基質(zhì)模型用于解釋HRAS工藝的特性,雙基質(zhì)模型的核心之處是將溶解性可生物降解有機物(SB)進一步分為快速溶解性可生物降解有機物(SBf)和慢速溶解性可生物降解有機物(SBS),雙基質(zhì)模型認(rèn)為SBf 與SBS同時被生物降解,微生物利用SBf的最大比生長速率較SBS的要高,進一步的試驗也驗證雙基質(zhì)模型較雙階段模型更為準(zhǔn)確,雙階段模型認(rèn)為微生物首先利用SBf,之后再利用SBS。
2.2.2HiCS工藝
在對HRAS工藝機理認(rèn)識不斷深入的同時,一些衍生工藝也得到了發(fā)展,并展現(xiàn)出更好的發(fā)展勢頭,其中之一便是高負(fù)荷接觸穩(wěn)定工藝(見圖5)。傳統(tǒng)接觸穩(wěn)定工藝是1922年Coombs在英國開創(chuàng),一般SRT>3 d,通常目的是為了減少反應(yīng)池的池容。HiCS工藝的SRT一般為0.2~3 d,是HRAS和接觸穩(wěn)定工藝的相互結(jié)合,生物吸附能力更強,所需的池容更小,污水的碳轉(zhuǎn)向效率更高。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
HiCS工藝包括穩(wěn)定池和接觸池,進水直接進入接觸池,保持在厭氧或較低的DO環(huán)境,回流污泥進入穩(wěn)定池進行曝氣。接觸池去除進水有機物的主要機理是微生物在飽食狀態(tài)下的吸附與胞內(nèi)貯存,而在穩(wěn)定池中微生物處于饑餓階段,大量吸附回流污泥中的顆粒態(tài)、膠體態(tài)物質(zhì)。在HiCS工藝中,接觸池與穩(wěn)定池之間會形成一定的基質(zhì)梯度,迫使微生物經(jīng)歷“飽食-饑餓”的環(huán)境,產(chǎn)生一種令微生物傾向于吸附與貯存基質(zhì)的選擇壓,起到類似活性污泥工藝中選擇器的作用。
在HiCS工藝中,當(dāng)接觸池的泥齡為0.3 d,好氧的條件下會產(chǎn)生較為明顯的EPS,EPS的產(chǎn)生會提高生物絮凝性能,這對于實現(xiàn)能量的最大化回收以及保持良好的污泥沉降性能非常關(guān)鍵。在某種程度上這與好氧顆粒污泥形成的條件之一“飽食-饑餓”有著類似之處。
HiCS工藝的發(fā)展為實現(xiàn)污水處理的能量自給開辟了一條值得借鑒的方法,污水中蘊含著客觀的能量,有的研究結(jié)果顯示污水中所蘊含的化學(xué)能是處理所需能耗的1.2~6倍,但目前絕大多數(shù)處理工藝是分解COD,而非回收COD。研究結(jié)果顯示,HiCS工藝較傳統(tǒng)活性污泥工藝能量回收高1倍。通常,傳統(tǒng)活性污泥工藝的能耗是27 kWh˙PE(PE為人口當(dāng)量),HiCS的能量回收可以達到28 kWh˙PE,非常有利于實現(xiàn)污水處理的能源自給。HiCS工藝在未來進一步發(fā)展的方向仍然是需要更深入了解吸附、貯存、生長及氧化的機理,并在工程尺度的規(guī)模上優(yōu)化設(shè)計與運行。
第3頁 /(共3頁)
2.3主流短程脫氮技術(shù)
主流短程脫氮技術(shù)包括短程硝化反硝化(Nitrite shunt)、厭氧氨氧化、厭氧甲烷氧化(DAMO)。目前,厭氧甲烷氧化仍處于基礎(chǔ)研究階段,可能在未來相當(dāng)長一段時間還難以走向?qū)嶋H工程應(yīng)用,短程反硝化和厭氧氨氧化的蓬勃的發(fā)展勢頭令人關(guān)注。
2.3.1現(xiàn)狀
從工程角度而言,推動短程硝化反硝化及主流厭氧氨氧化發(fā)展的動力主要來自于減少或摒棄外加碳源的需求、降低曝氣能耗以及追求更小的反應(yīng)池容。
不同的水質(zhì)特征會影響到主流短程脫氮技術(shù)的選擇,如果進水碳氮比較高(C/N=6~10)時適合傳統(tǒng)硝化反硝化,當(dāng)碳氮比處于中等水平(C/N=3)適宜短程硝化反硝化,當(dāng)碳氮比較低時(C/N<1)時適合主流厭氧氨氧化。由于主流厭氧氨氧化的前景巨大,同時短程硝化是厭氧氨氧化的一個必要前提,因此主流厭氧氨氧化成為脫氮技術(shù)發(fā)展的焦點。
目前,國際上主流厭氧氨氧化的技術(shù)發(fā)展路線大致有四類:顆粒污泥、絮體+顆粒污泥、生物膜/IFAS以及懸浮+生物膜的形式形式,如圖6所示。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
上述四種技術(shù)路線各有特點,在保持Anammox菌方面,顆粒污泥、生物膜/IFAS及懸浮+生物膜的方式比較類似,Anammox菌生長在顆粒內(nèi)或附著于填料上;絮體+顆粒污泥的技術(shù)路線是利用旋流器或篩網(wǎng)分離Anammox菌;在抑制NOB方面,主要的控制方式有出水殘留氨氮濃度、SRT控制、DO控制、瞬時缺氧等。不同的技術(shù)路線所采用的NOB抑制措施也不完全相同,顆粒污泥路線的方式是控制曝氣的體積、出水殘留氨氮、HRT控制絮體的泥齡;生物膜/IFAS技術(shù)路線的方式保持較低的DO、生物膜厚度的控制以及出水殘留的氨氮濃度;絮體+顆粒污泥與懸浮+生物膜的技術(shù)路線是保持較高的DO、出水殘留氨氮濃度、瞬時缺氧、主動SRT等。
從實踐層面來看,各種不同技術(shù)流派已經(jīng)或正在中試及工程尺度規(guī)模推進主流厭氧氨氧化的實踐。目前,主流DEMON工藝在德國、奧地利、荷蘭、美國、丹麥的污水處理廠正在探索,主流Anita-Mox在巴黎的中試試驗結(jié)果表明,在最低水溫為15 ℃時,出水TN可以穩(wěn)定低于15 mg/L。新加坡樟宜再生水廠的研究結(jié)果也表明,Anammox菌對該廠的主流脫氮貢獻達到了31%。這些不同層面的實踐正一步步推動主流厭氧氨氧化技術(shù)向前發(fā)展。
2.3.2目前的挑戰(zhàn)與現(xiàn)實意義
雖然世界各地的污水處理實踐不斷地推動和深化主流厭氧氨氧化的認(rèn)識,但目前的挑戰(zhàn)依然巨大,這些挑戰(zhàn)從宏觀層面看主要是水溫較低與基質(zhì)濃度較低造成的不利影響,從微觀層面來看實際上是如何控制不同微生物的高度共生。
在主流厭氧氨氧化工藝中,主要有Anammox菌、AOB、NOB、普通異養(yǎng)菌(OHO),這些微生物共存于一個系統(tǒng)中,對不同的基質(zhì)形成了非常復(fù)雜的競爭關(guān)系,主要有AOB與NOB對氧的競爭(DO的控制水平、曝氣的時間)、NOB與Anammox菌對亞硝酸鹽氮的競爭(不同的亞硝酸鹽氮半飽和濃度及不同的溫度敏感性)以及異養(yǎng)菌與NOB對亞硝酸鹽氮的競爭,如圖7所示,如何控制這些微生物處于合理的水平無論是對于微生物的認(rèn)知還是控制手段的優(yōu)化都是巨大的挑戰(zhàn)。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
在這些復(fù)雜的競爭關(guān)系中,如何抑制NOB成為這一技術(shù)發(fā)展的關(guān)鍵所在,從目前的認(rèn)識來看,NOB遠比我們之前的認(rèn)識復(fù)雜,抑制的難度也較大。在側(cè)流工藝中,NOB主要是Nitrobacter,對NO-2-N有較低的親和力。而在主流工藝中,NOB主要是Nitrospira,對NO-2-N有較高的親和力,如表1所示。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用
Anammox菌對NO2-N的半飽和常數(shù)約0.6 mg NO-2-N,這樣在與Nitrospira對NO-2-N的競爭中就會處于劣勢,最終無法實現(xiàn)短程脫氮。因此,雖然目前的各種手段有助于抑制NOB,但在工程規(guī)模的負(fù)荷變化中,仍然難以有效地解決這一問題。
盡管主流厭氧氨氧化沒有完全成熟,但由于這一技術(shù)的巨大吸引力促使世界各地的污水處理廠不斷探索實踐,同時主流厭氧氨氧化的一些技術(shù)措施對傳統(tǒng)工藝也是有利,比如側(cè)流向主流工藝的生物強化會提高主流工藝的污泥沉降性能、間歇曝氣有助于降低傳統(tǒng)工藝的出水TN等。
原標(biāo)題:給水排水 |未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(上)
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
第1頁 /(共3頁)
北極星環(huán)保網(wǎng)訊:在昨天發(fā)布的《未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(上)》中為我們回顧了污水處理工藝發(fā)展的歷史、探討了未來污水處理工藝發(fā)展的方向,本文我們將繼續(xù)了解工藝發(fā)展的規(guī)律、未來污水處理技術(shù)的應(yīng)用等問題。
2.3.3未來的發(fā)展
或許歷史中的某些現(xiàn)象可以給未來的發(fā)展提供一些啟迪。早在1906年就有報道污水在過濾時出現(xiàn)氮損失的現(xiàn)象,特別是在處理稀釋的尿液時尤為明顯,濾后出水的氮濃度不到原進水的一半,Chick認(rèn)為這是某種微生物起到了作用。其他的研究者在上世紀(jì)30的年代也報道,當(dāng)亞硝酸鹽與氨氮同時存在時會發(fā)生“自動氧化”的現(xiàn)象。這種現(xiàn)象雖然難以確切地表明一定是Anammox菌在起作用,但至少表明自然界的氮循環(huán)現(xiàn)象比我們想象的要遠為復(fù)雜。
因此,主流厭氧氨氧化的未知領(lǐng)域探索仍需深入,一方面是NOB的抑制,尤其是間歇曝氣對NOB的抑制非常關(guān)鍵,這方面的深入研究非常關(guān)鍵;另外一方面是Anammox菌的生長,雖然側(cè)流向主流的生物強化在多個污水處理廠進行了實踐,但其確切的機理及意義還需要進一步研究。未來的突破很可能是來自微生物學(xué)的研究進展,尤其是需要尋找到一種對亞硝酸鹽氮有較強親和力的Anammox菌,這種Anammox菌的特性也許和側(cè)流工藝中的有很大的不同。
2.4生物膜技術(shù)
無論從人類的傷口感染、中耳炎,還是食品的變質(zhì)、輸水管道內(nèi)壁的微生物的附著,生物膜存在于人類生活的方方面面,其在污水處理方面的應(yīng)用歷史甚至比活性污泥法還長,最為典型的便是早期滴濾池在歐美各地的應(yīng)用。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
雖然生物膜工藝在活性污泥法出現(xiàn)之后應(yīng)用數(shù)量有所下降,但從來沒有退出歷史的舞臺。隨著對生物膜機理認(rèn)識的愈加深入,尤其是在生物膜形成機理及結(jié)構(gòu)穩(wěn)定性方面的認(rèn)識促使一些新型生物膜技術(shù)得到了發(fā)展,這一具有悠久歷史的技術(shù)正重新煥發(fā)出新的光芒。
2.4.1MBBR/IFAS
作為生物膜技術(shù)的典型代表,MBBR/IFAS工藝在全球有超過1 200座污水處理廠[45]的應(yīng)用,在未來這種技術(shù)將得到更為廣泛的應(yīng)用,其應(yīng)用的場合不僅限于有機物去除及硝化的目的,還可用于反硝化以及厭氧氨氧化。
MBBR/IFAS工藝在未來的發(fā)展將在理解生物膜機理方面不斷深入,尤其是在生物膜模型方面,目前廣為接受的模型是一維模型,但實際上簡單的一維模型可能很難真實反映客觀世界,特別是有關(guān)生物膜水動力學(xué)方面的特征。生物膜模型的應(yīng)用已經(jīng)成為設(shè)計人員研究與應(yīng)用的一個重要工具。
另外,在某種程度上,MBBR工藝與好氧顆粒污泥有著類似之處,EPS對生物膜結(jié)構(gòu)的穩(wěn)定性方面扮演著重要的角色,這與其對好氧顆粒污泥的作用相似。實際上,在微生物研究者的角度來看,好氧顆粒污泥也是一種生物膜技術(shù)。而在工程應(yīng)用者的角度來看,兩者是不同的技術(shù)。
2.4.2MABR
在傳統(tǒng)活性污泥工藝中,40%~60%的能耗用于曝氣,但是鼓風(fēng)曝氣只能將5%~25%的氧轉(zhuǎn)移到水中,剩余的會以氣泡的形式逸出進入大氣。相反,如果能將100%的氧轉(zhuǎn)移到水中,鼓風(fēng)曝氣的能耗將降低75%~95%。因此,圍繞如何有效地利用氧降低能耗始終是污水處理技術(shù)研究的一個重要內(nèi)容。
近些年來,在曝氣利用效率方面一項頗具發(fā)展?jié)摿Φ纳锬ぜ夹g(shù)是MABR(Membrane Aerated Biofilm Reactor,即膜曝氣生物膜反應(yīng)器)引起業(yè)內(nèi)的廣為關(guān)注,并被眾多研究者廣為看好。MABR的主要原理是采用空氣在膜絲中進入,生物膜附著于膜材料表面上(如圖9所示),曝氣的氧利用效率得到了極大的提高。傳統(tǒng)微孔曝氣技術(shù)的氧轉(zhuǎn)移率通常為1~2 kg O2/k˙Wh,而MABR可以達到6 kg O2/kW˙h以上,節(jié)能效果非常顯著。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
MABR工藝的另外一個特點是基質(zhì)擴散的相反梯度,如圖10所示。在傳統(tǒng)的生物膜工藝中,BOD、NH3-N、DO的濃度隨著由液相向生物膜的擴散過程中而濃度逐漸降低,這種情對于硝化是不利的,需要有足夠的DO能夠穿透進入生物膜內(nèi)部,而這樣對生物膜外層的異養(yǎng)菌反硝化又是不利的。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
在MABR工藝中,BOD與DO在生物膜內(nèi)的變化情況正好相反,BOD從液相擴散進入到生物膜后逐漸降低,而DO從靠近膜的方向向著液相的方向逐漸降低,這樣對于硝化和反硝化都有利,這樣MABR工藝在脫氮方面有著獨特的技術(shù)優(yōu)勢。
延伸閱讀:
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(上)
第2頁 /(共3頁)
在具體應(yīng)用上,MABR工藝可以單獨使用,或是與傳統(tǒng)活性污泥工藝相結(jié)合,在曝氣池的前部設(shè)置厭氧區(qū)用于生物除磷,在中部位置放置MABR單元,其余部分仍然采用微孔曝氣的活性污泥工藝(如圖11所示),這樣懸浮污泥可以利用進水中的碳源實現(xiàn)反硝化,而附著于MABR膜上的生物膜完成硝化過程,從而有效地避免了有機物與硝化對DO的競爭問題,這樣的工藝設(shè)置不僅節(jié)能還能大幅度降低池容。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
美國芝加哥的O′Brien再生水廠進行了相關(guān)MABR技術(shù)的中試,試驗的規(guī)模是1 900 m3/d,節(jié)能效果達到了30%。MABR工藝在未來的發(fā)展需要解決生物膜生長與基質(zhì)及DO擴散方面的問題,同時在應(yīng)用規(guī)模上不斷擴大。
2.5ICA與模型的應(yīng)用
ICA(儀表、控制與自動化)是未來現(xiàn)代化污水處理廠的重要特征,未來的污水處理工藝發(fā)展將越來越重視ICA與工藝的結(jié)合。從70年代DO傳感器在污水處理領(lǐng)域的引入算起已經(jīng)經(jīng)歷了40年多年的發(fā)展,ICA在污水處理領(lǐng)域中的應(yīng)用獲得了長足的發(fā)展,基于各種控制原理的應(yīng)用已經(jīng)在世界各地的污水處理廠得到了應(yīng)用。
未來ICA的發(fā)展將集中在以下幾個方面,首先仍然是深入理解工藝的動態(tài)特性,工藝的干擾因素,如何確定合理的控制變量,這些對儀表的需求無疑非常重要;其次是開發(fā)滿足工藝監(jiān)測與控制的合理傳感器、儀表(包括變送器和執(zhí)行器);在數(shù)據(jù)收集處理方面,需要篩選、過濾、降噪以獲得充足、并經(jīng)分析過的數(shù)據(jù),同時將這些數(shù)據(jù)轉(zhuǎn)化成為有意義的信息。另外一個值得關(guān)注的問題是隨著物聯(lián)網(wǎng)和控制系統(tǒng)的集成,網(wǎng)絡(luò)安全將是一個重要的關(guān)注內(nèi)容。在PLC技術(shù)和中央控制系統(tǒng)技術(shù)(SCADA)技術(shù)連接到互聯(lián)網(wǎng)實施遠程控制的情況下,對于運行的控制安全尤為重要,特別是對處理廠的設(shè)備設(shè)施的物理損壞方面更顯得尤為迫切。同時,一些復(fù)雜性技術(shù)的應(yīng)用需要高度關(guān)注,WiFi、藍牙、4G/5G的信息傳遞使污水處理工藝的運行在安全性方面特別令人關(guān)注。
從1987年國際水協(xié)推出的ASM模型算起,活性污泥數(shù)學(xué)模型已經(jīng)經(jīng)歷了30年的發(fā)展,基本模型已經(jīng)成熟,模型的開發(fā)已經(jīng)接近尾聲,但模型的應(yīng)用依然任重道遠。生物動力學(xué)模型已經(jīng)不再是應(yīng)用的瓶頸,但數(shù)據(jù)的質(zhì)量、數(shù)據(jù)的可獲得性是最大的問題,將海量數(shù)據(jù)轉(zhuǎn)化為供模型有價值的信息將成為實際模擬工作的一大挑戰(zhàn)。另外一個問題是不同模型之間的整合,例如將污水管道-污水處理廠-河流整合起來的模型。同時,動態(tài)模型的應(yīng)用與SCADA系統(tǒng)的整合對于運行管理者將會提供更有價值的信息。
3工藝發(fā)展的規(guī)律
3.1創(chuàng)新需要長時間的積累
污水處理工藝的創(chuàng)新從來不是一夜之間的事情,某項技術(shù)的出現(xiàn)有著復(fù)雜的歷史背景。以活性污泥工藝為例,雖然這項技術(shù)出現(xiàn)在1914年,但促成這項技術(shù)出現(xiàn)的因素可以追溯至30年前。1882年,史密斯開始對污水曝氣研究,之后又有Dibdin, Kaye-Parry, Drown, Mason等眾多的研究者繼續(xù)沿著這個方向繼續(xù)研究,對污水曝氣的研究的直接結(jié)論就是曝氣可以防止污水腐敗。在這之后的多年里,污水曝氣的研究并沒有獲得處理效率的明顯改善,但在1910年的時候人們逐漸意識到污水曝氣形成的懸浮物對于處理效果很重要,所有這些都為1914年的工藝突破奠定堅實的基礎(chǔ)。
同樣,在當(dāng)今被廣為看好的好氧顆粒污泥技術(shù)在也經(jīng)歷了漫長的早期發(fā)展,從早期日本學(xué)者1991年最初提出的概念到2011年第一座基于好氧顆粒污泥設(shè)計的城市污水處理廠在荷蘭Epe開始運行經(jīng)歷了20年。
實際上,甚至一個概念的形成也需要經(jīng)歷幾十年才被最終接受。比如泥齡的概念,Garrett可能是最早意識到微生物的生長與排泥有密切的關(guān)系,他在1958年的時候?qū)ο趸F(xiàn)象這樣記錄:“出水的月均亞硝酸鹽氮+硝酸鹽氮只有0.2~0.7 mg/L,顯然氧化的氮很少,這可能是曝氣池里排泥的速度超過了硝化菌自身最大的生長速度”,之后英國水污染研究中心的Downing在1964年建立起了基于動力學(xué)概念的硝化設(shè)計理論,到了1970年,基于泥齡的硝化設(shè)計和模擬理念最終被人們所徹底接受。
因此,創(chuàng)新技術(shù)的出現(xiàn)是自然而然、水到渠成的過程,并非一夜之間顛覆性的出現(xiàn)。
3.2關(guān)鍵的突破
工藝的發(fā)展在經(jīng)歷了充分的積累之后,可能會獲得關(guān)鍵性的突破。在早期污水經(jīng)歷了31年的曝氣研究之后,Ardern和Lockett在1914年將曝氣之后形成的污泥留存下來成為關(guān)鍵性的突破,這一突破在當(dāng)時甚至被認(rèn)為是離經(jīng)叛道的,因為在當(dāng)時人們認(rèn)為污水凈化不應(yīng)該形成污泥。
傳統(tǒng)生物脫氮工藝的關(guān)鍵突破也是經(jīng)歷了較長的發(fā)展階段才走向成熟,早期生物脫氮的概念在上世紀(jì)60年代逐漸出現(xiàn),最初是Wuhrmann提出的后置脫氮方式,之后Ludzak & Ettinger提出了前置脫氮方式,但最為關(guān)鍵的是在70年代James Barnard在前置脫氮方式的基礎(chǔ)上引入了內(nèi)回流的措施,這成為日后污水生物脫氮的標(biāo)準(zhǔn)做法。
3.3走向成熟的發(fā)展規(guī)律
污水處理技術(shù)從創(chuàng)新走向成熟有著內(nèi)在的規(guī)律,這種規(guī)律基本是從早期的現(xiàn)象探索,到試驗室的研究,基本理論的提出,進一步放大的試驗,理論的進一步完善,示范性項目的出現(xiàn),到最后一定數(shù)量的工程應(yīng)用。如同其他技術(shù)發(fā)展的規(guī)律一樣,污水處理技術(shù)走向成熟可以用S-曲線來反映,S-曲線描述了技術(shù)系統(tǒng)的生命發(fā)展周期,主要包括萌芽期、成長期、成熟期和衰退期。S-曲線的橫軸表示時間,豎軸表示技術(shù)應(yīng)用參數(shù)。
處于萌芽期的技術(shù)盡管有新的技術(shù)功能,但這一階段的技術(shù)明顯地處于初級,存在著效率低、可靠性差或一些尚未解決的問題。由于人們對它的未來比較難以把握,而且風(fēng)險較大,因此只有少數(shù)眼光獨到者才會進行投資,處于此階段的技術(shù)所能獲得人力、物力上的投入是非常有限的,例如微生物燃料電池技術(shù)。處于萌芽期的技術(shù)性能的完善非常緩慢,這一階段產(chǎn)生的專利級別很高,但專利數(shù)量較少,此階段的經(jīng)濟收益為負(fù)。而且,有些技術(shù)難以走過萌芽期就會消失。
進入發(fā)展期后,原來存在的各種問題逐步得到解決,效率和產(chǎn)品可靠性得到較大程度的提升,其價值開始獲得社會的廣泛認(rèn)可,發(fā)展?jié)摿σ查_始顯現(xiàn),從而吸引了大量的人力、財力,大量資金的投入會推動技術(shù)系統(tǒng)獲得高速發(fā)展,特別是當(dāng)污水處理技術(shù)進入生產(chǎn)性規(guī)模的時候,其往往也進入成長期。
在獲得大量資源的情況下,技術(shù)進從成長期快速進入成熟期,這時技術(shù)系統(tǒng)趨于完善,所進行的大部分工作只是系統(tǒng)的局部改進和完善,現(xiàn)在的DEMON、ANAMMOX技術(shù)正在從成長期進入成熟期階段。
處于成熟期的技術(shù)其性能水平達到最佳,這時仍然會產(chǎn)生大量的專利,但專利級別會更低,同時一些垃圾專利也會大量產(chǎn)生。處于此階段的產(chǎn)品已進入大批量生產(chǎn),并獲得巨額的收益。常規(guī)的傳統(tǒng)活性污泥法、氧化溝、SBR技術(shù)等基本處于這一階段。在進入成熟期后,技術(shù)將逐漸進入衰退期,此時技術(shù)已經(jīng)達到極限,工藝的發(fā)展不會再有新的突破。
污水處理技術(shù)系統(tǒng)在其生命周期之中,總是沿著提高其理想度向最理想系統(tǒng)的方向進化,提高理想度法則代表著所有技術(shù)系統(tǒng)進化法則的最終方向。理想化是推動技術(shù)進化的主要動力。在當(dāng)前的污水處理技術(shù)中,主流厭氧氨氧化還處于萌芽期向成長期的發(fā)展階段,在世界上的一些地方中試正在進行,有極個別的生產(chǎn)性規(guī)模的污水處理廠也正在探索。作為好氧顆粒污泥技術(shù)的代表,Nereda工藝實際上已經(jīng)進入了成長期的階段,當(dāng)然其作為好氧顆粒污泥工藝的反映,還可能處于第一代的水平,未來的發(fā)展還會出現(xiàn)性能更佳的好氧顆粒污泥技術(shù)。圖12是一些污水處理工藝在S-曲線上的位置反映。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
延伸閱讀:
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(上)
第3頁 /(共3頁)
4未來污水處理技術(shù)的應(yīng)用
污水處理技術(shù)的發(fā)展必然是多元化的,其應(yīng)用也必然是各種技術(shù)共存。前瞻性污水處理技術(shù)的應(yīng)用需要格外重視適應(yīng)性的原則,工藝的適應(yīng)性簡言之就是具有足夠的靈活性能夠在相當(dāng)長的時間內(nèi)適應(yīng)污水處理各種可能的方向發(fā)展。
未來污水處理廠的適應(yīng)性首先需要體現(xiàn)在對水力性能方面,污水處理廠需要能夠適應(yīng)最低流量、峰值流量的波動,一方面由于節(jié)水意識和措施的深入,未來污水處理廠的最低流量可能會比歷史上的任何時期都低,另一方面由于氣化變化導(dǎo)致的極端天氣,雨季的峰值流量又會比以往更高,如何適應(yīng)未來水量的這種變化是未來污水處理廠不容忽視的一個問題。
其次,工藝的適應(yīng)性還體現(xiàn)在如何利用現(xiàn)有設(shè)施來應(yīng)用新的技術(shù)。例如主流厭氧氨氧化的應(yīng)用需要有碳分離過程,做到傳統(tǒng)工藝與發(fā)展中的工藝(主流厭氧氨氧化)在應(yīng)用上的有效銜接,無疑對于如何走向未來至關(guān)重要。
適應(yīng)性還需要考慮在污水處理廠生命周期內(nèi)不同單元的更新迭代,由此產(chǎn)生的技術(shù)更替。Glen Daigger對污水處理廠各個部分的壽命做了清晰的劃分,如表2所以。
未來污水處理工藝發(fā)展的若干方向、規(guī)律及應(yīng)用(下)
因此,對于某一種特定的技術(shù),其對污水處理廠各個不同單元的配置要求以及不同單元的使用壽命也是衡量其能否適應(yīng)未來的變化的重要因素。
由于現(xiàn)在各地已經(jīng)建設(shè)了大量的污水處理廠,可以預(yù)計這些設(shè)施將在未來的幾十年中持續(xù)存在,如何利用現(xiàn)有的這些設(shè)施來嵌入新工藝的發(fā)展無疑是非常關(guān)鍵和重要的,這對新技術(shù)而言既是挑戰(zhàn),更是機遇。因此,未來的一個應(yīng)用挑戰(zhàn)將是新工藝對現(xiàn)有設(shè)施的適應(yīng)性,如何實現(xiàn)營養(yǎng)物去除、設(shè)備配置以及運行操作的完美統(tǒng)一。
5結(jié)論
現(xiàn)代污水處理技術(shù)在經(jīng)歷了100年的發(fā)展之后迎來了新的挑戰(zhàn)與機遇。對于微生物世界認(rèn)識的愈加深入使得污水處理工藝朝著更加節(jié)能、更加緊湊的方向發(fā)展。
好氧顆粒污泥將朝著更加適用性及連續(xù)流的方向發(fā)展,在實際應(yīng)用中將會更加注重絮體與顆粒污泥之間的平衡,集成絮體-顆粒污泥(IFGS)可能會是具體的技術(shù)應(yīng)用形式;碳轉(zhuǎn)向是今后污水處理發(fā)展的一個重要方向;主流短程脫氮技術(shù)的發(fā)展愈加深入,其衍生出的泥齡分離概念(SRT decoupling)、間歇曝氣、生物強化(Bioaugumentation)不斷豐富污水處理的理念,未來的突破可能在微生物方面的認(rèn)識進展;生物膜技術(shù)的認(rèn)識和應(yīng)用將會更加深入,MABR技術(shù)獨特的特點使得供氧朝著更為理想化的方向發(fā)展。在上述工藝發(fā)展過程中,ICA的應(yīng)用將更加普及,基于數(shù)據(jù)調(diào)諧的模型應(yīng)用將顯現(xiàn)出更加強大的力量。