中國(guó)給水排水2021年中國(guó)污水處理廠提標(biāo)改造(污水處理提質(zhì)增效)高級(jí)研討會(huì)0603.docx
中國(guó)給水排水2021年中國(guó)排水管網(wǎng)水環(huán)境大會(huì)0603.docx
中國(guó)給水排水 2021中國(guó)污水資源化利用大會(huì) 0603.doc
-
12:34已群發(fā)
-
昨天 17:44已群發(fā)
-
星期四 15:24已群發(fā)
-
星期三 18:38已群發(fā)
-
星期二 18:05已群發(fā)
-
星期一 17:29已群發(fā)
-
星期日 19:31已群發(fā)
[1]陳寶玉,王正雄,楊濤,等.深層隧道排水系統(tǒng)中深隧泵站的設(shè)計(jì)與優(yōu)化[J].中國(guó)給水排水,2021,37(4):62-66.
CHEN Bao-yu,WANG Zheng-xiong,YANG Tao,et al.Design and Optimization of the Deep Tunnel Pumping Station in Deep Tunnel Drainage System[J].China Water & Wastewater,2021,37(4):62-66.
點(diǎn)擊復(fù)制
CHEN Bao-yu,WANG Zheng-xiong,YANG Tao,et al.Design and Optimization of the Deep Tunnel Pumping Station in Deep Tunnel Drainage System[J].China Water & Wastewater,2021,37(4):62-66.
深層隧道排水系統(tǒng)中深隧泵站的設(shè)計(jì)與優(yōu)化
中國(guó)給水排水[ISSN:1000-4062/CN:12-1073/TU] 卷: 第37卷 期數(shù): 2021年第4期 頁(yè)碼: 62-66 欄目: 出版日期: 2021-02-17
- Title:
- Design and Optimization of the Deep Tunnel Pumping Station in Deep Tunnel Drainage System
- 關(guān)鍵詞:
- 深隧泵站(DTPS); CFD分析; 物理模型試驗(yàn)
摘要:- 武漢市大東湖核心區(qū)污水傳輸系統(tǒng)工程采用深層隧道排水系統(tǒng),隧道末端為北湖深隧泵站,其設(shè)計(jì)規(guī)模為100×104 m3/d,為壓力流泵站,地下深度為46.35 m,凈提升高度為16.1~22.4 m。泵組采用6臺(tái)離心泵(4用2備),單泵流量Q=2.79~3.87 m3/s,水泵揚(yáng)程H=196.3~304.4 kPa。在北湖深隧泵站的設(shè)計(jì)過(guò)程中,采用了計(jì)算流體動(dòng)力學(xué)(CFD)模擬分析、物理模型試驗(yàn)、水錘分析及結(jié)構(gòu)振動(dòng)分析等方法,并根據(jù)分析結(jié)果對(duì)其設(shè)計(jì)方案進(jìn)行了優(yōu)化。
Abstract:- A deep tunnel drainage system was applied in the sewage transmission system project of Wuhan Dadonghu Core Area. The end of the tunnel is the Beihu deep tunnel pumping station, with a design capacity of 100×104 m3/d. It is a pressure flow pumping station with underground depth of 46.35 m and net lifting height of 16.1-22.4 m. Six centrifugal pumps, including 4 working pumps and 2 spare pumps, were applied, and the working range was Q=2.79-3.87 m3/s and H=196.3-304.4 kPa. In the design of the Beihu deep tunnel pumping station, the computational fluid dynamics (CFD) simulation analysis, physical model test, water hammer analysis and structural vibration analysis were used. According to the analysis results, the design scheme was optimized.
更新日期/Last Update: 2021-02-17